The X-Ray Crystal Structure of the Indium(III) Iodide–Bis(dimethyl sulphoxide) Adduct

By F. W. B. EINSTEIN* and D. G. TUCK

(Department of Chemistry, Simon Fraser University, Burnaby 413, British Columbia, Canada)

Summary The addition compound of stoicheiometry $InI_3(Me_2SO)_2$ is shown to be an ionic dimer $[InI_2(Me_2SO)_4]$ $[InI_4]$ in the solid state: the iodine atoms in the cation are in the *cis*-configuration.

ADDITION compounds of Group IIIA trihalides with neutral monodentate ligands are known with the stoicheiometries MX_3L , MX_3L_2 , and MX_3L_3 (M = Al, Ga, In; X = Cl, Br, I; L = donor ligand). All three stoicheiometries have been reported for indium(11) halides.¹ With L = dimethyl sulphoxide, indium(11) chloride and bromide both yield $InX_3(Me_2SO)_3$, which have been shown² to be neutral mononuclear species, but the iodide adduct has the stoicheiometry $InI_3(Me_2SO)_2$. The only reported X-ray structure determination for an indium(11) halide adduct refers to $InCl_3(Ph_3P)_2$, which Veidis and Palenik³ find to have an axially substituted trigonal-bipyramidal structure, in agreement with earlier work.²

We now report the results of a crystallographic study of the compound of stoicheiometry $InI_{3,}(Me_2SO)_2$, which we find to have the molecular formula $[InI_2(Me_2SO)_4][InI_4]$ in the solid state. Crystals of $[InI_2(Me_2SO)_4][InI_4]$ crystallize in the monoclinic space group C2/c, with cell dimensions a = 39.86, b = 8.048, c = 27.70 Å, and $\beta = 129.15^{\circ}$. There is one formula unit in the asymmetric unit; neither ion has any crystallographic symmetry. An X-ray crystal structure determination using scintillation counter data (1133 observed reflexions) gives an agreement of R = 0.098based on full-matrix least-squares refinement of all coordinate and isotropic thermal parameters for non-hydrogen atoms.

The anion has an almost regular tetrahedral symmetry, with an average In–I bond length of 2.71 ± 0.01 Å. The cation has the iodine atom in a *cis*-arrangement, subtending an angle of 98° at the indium atom; the indium-iodine bond lengths of 2.79 and 2.81 Å are longer than in the anion.

The increase is close to that predicted for a change in co-ordination number from four to six. In the similar case of $[GaCl_2(bipy)_2][GaCl_4]$ (bipy = 2,2'-bipyridyl), the Ga-Cl bond lengths in cation and anion are 2.264 and 2.166 Å, respectively.⁴ The dimethyl sulphoxide ligands in $[InI_2-(Me_2SO)_4]^+$ are all oxygen-bonded, with In-O distances ranging between 2.15 and 2.20 Å.

The In-I bond in [InI4] - is longer than in the isoelectronic molecule SnI₄ (Sn-I 2.64 ± 0.04 Å),⁵ but similar to that in In_2I_8 (average 2.76 Å).⁶ The most interesting feature of the structure of the cation is the cis-configuration of the two iodine atoms. At present, it is not possible to say with certainty whether this is the unique stable stereoisomer of $[InI_2(Me_2SO)_4]^+$, or whether the stabilisation of this form is a function of the anion present in the lattice. The $[GaCl_2(bipy)_2]^+$ ion also has the *cis*-configuration, which has been discussed in terms of a stabilising transeffect in d^{10} complexes.⁷ The electronic interpretation of such an effect is not yet clear, but in any case the effect does not appear to be significant in the $[InI_2(Me_2SO)_4]^+$ structure. In contrast to the Ga-Cl situation, the difference in the In–I and In–O bond lengths is 0.63 Å, very close to the difference in the single-bond covalent radii of iodine and oxygen (0.67 Å), so that there is apparently little or no shortening of In-I bond, as would be required by a transeffect of the type invoked to explain the different Ga-Cl bond lengths in $[GaCl_2(bipy)_2]^+$ and in $GaCl_3(2,2',2''$ terpyridyl).4,7

The existence of two different structures with the stoicheiometry InX_3L_2 is of considerable interest. The structure of $InI_3(Me_2SO)_2$ could not be established by i.r. studies alone,² but the Raman spectrum shows emissions at 138vs, and 180w, br (cm⁻¹), readily assigned to the $[InI_4]^-$ anion.⁸ The type of structure found is apparently not peculiar to the dimethyl sulphoxide adduct, since $InI_3(Ph_3PO)_2$ also has a strong Raman band at 139 cm⁻¹.

Both $InCl_3(Ph_3P)_2$ and $[InI_2(Me_2SO)_4][InI_4]$ have conductivities typical of weak electrolytes in polar organic solvents,¹ so that considerable rearrangement of the solid state structures must occur in such solutions. The isolation of $[InI_2(Me_2\mathrm{SO})_4][InI_4],$ rather than the mononuclear $InI_3(Me_2SO)_2$, in the solid state, may be due in part to the stability of the $[InI_4]^-$ anion, which is the only anionic indium(III) complex halogeno-anion identified in salts with a wide variety of cations.⁹

This work was supported in part by the National Research Council of Canada.

(Received, July 23rd, 1970; Com. 1223.)

- ¹ A. J. Carty and D. G. Tuck, J. Chem. Soc., 1966, 1081, and refs. therein.
 ² D. M. Adams, A. J. Carty, P. Carty, and D. G. Tuck, J. Chem. Soc. (A), 1968, 162.
 ³ M. V. Veidis and G. J. Palenik, Chem. Comm., 1969, 586.
 ⁴ R. Restivo and G. J. Palenik, Chem. Comm., 1969, 867.
 ⁵ "Interatomic Distances," Chem. Soc. Special Publ., No. 11, 1958, p. M41.

- ⁶ Ref. 5, p. M31.
- ⁸G. Beran, A. J. Carty, H. A. Patel, and G. J. Palenik, *Chem. Comm.*, 1970, 222.
 ⁸L. A. Woodward and G. H. Singer, *J. Chem. Soc.*, 1958, 716.
 ⁹D. M. Adams, J. Gislason, M. H. Lloyd, and D. G. Tuck, unpublished results.